

ಬೆಂಗಳೂರು ಉತ್ತರ ವಿಶ್ವವಿದ್ಯಾಲಯ ಟಮಕ. ಕೋಲಾರ – 563103

CHOICE BASED CREDIT SYSTEM

(Semester Scheme with Multiple Entry and Exit Options for Under Graduate Course)

SYLLABUS AS PER NEP GUIDELINES

SUBJECT: COMPUTER SCIENCE

2021-22 onwards

BENGALURU NORTH UNIVERSITY KOLAR - 563103

National Education Policy - 2020 (Semester Scheme)

Model Curriculum Structure for Bachelor of Science (Basic and Honours) Programmes with Computer Science as Major and Minor Courses.

> Model Syllabus for I and II Semester and Open Elective Courses in Computer Science.

> > **Revised w.e.f.**

Academic Year 2021 - 2022 and onwards

Model Curriculum Structure

Program: BSc (Basic and Honors)

Subject: Computer Science

1. Computer Science as MAJOR with another Subject as MINOR (Table IIA of Model Curriculum)

Sem	Discipline Specific Core Courses	Hou Teaching	r of <mark>/ Week</mark>	Discipline Specific Elective Courses (DSE)/	Hour of Teaching/
	(DSC)	Theory	Lab	Vocational Courses (VC)	Week
1	DSC-1: Computer Fundamentals and				
	Programming in C	4			
	DSC-1Lab: C Programming Lab		4		
2	DSC-2: Data Structures using C	4			
	DSC-2Lab: Data structures Lab		4		
3	DSC-3: Object Oriented Programming				
	Concepts and Programming in JAVA	4			
	DSC-3Lab: JAVA Lab		4		
4	DSC-4: Database Management Systems	4			
	DSC-4Lab: DBMS Lab		4		
5	DSC-5: Programming in PYTHON	3		VC-1:	
	DSC-6: Computer Networks	3		Any one from Vocational	
	DSC-5Lab: PYTHON Programming lab		4	Courses, Group – 1*	3
	DSC-6Lab: Computer Networks Lab		4		
6	DSC-7: Internet Technologies	3		VC-2:	
	DSC-8: Operating System Concepts	3		Any one from Vocational	
	DSC-7Lab: JAVA Script, HTML, CSS Lab		4	Courses, Group – 2*	3
	DSC-8Lab: C# Programming Lab		4	Internship:	2
7	DSC-9: Computer Graphics and Visualization	3		DSE-1:	
	DSC-10: Design and Analysis of Algorithms	3		Any one from Discipline	
	DSC-11: Software Engineering	3		Specific Elective Courses,	
	DSC-9Lab: Computer Graphics and			Group – 1 ^{**}	3
	Visualization Lab		4	DSE-2:	
	DSC-10Lab: Algorithms Lab		4	Any one from Discipline	
				Specific Elective Courses,	
				Group – 2 ^{**}	3
				Research Methodology:	3
8	DSC-12: Artificial Intelligence and Applications	3		DSE-3:	
	DSC-13: Computer Organization and	3		Any one from Discipline	
	Architecture			Specific Elective Courses,	
	DSC-14: Data Warehousing and Data Mining	3		Group – 3 ^{**}	3
	DSC-12Lab: AI Lab		4	Research Project:	6

Sem Discipline Specific Core Courses		Hour of Teaching/ Week		Discipline Specific	Hour of Teaching/
	(DSC)		Lab	Elective Courses (DSE)	Week
1	DSC-1: Computer Fundamentals and Programming in C DSC-1Lab: C Programming Lab	4	4		
2	DSC-2: Data Structures using C DSC-2Lab: Data structures Lab	4	4		
3	DSC-3: Object Oriented Programming Concepts and Programming in JAVA DSC-3Lab: JAVA Lab	4	4		
4	DSC-4: Database Management Systems DSC-4Lab: DBMS Lab	4	4		
5	DSC-5: Programming in PYTHON DSC-6: Computer Networks DSC-5Lab: PYTHON Programming lab DSC-6Lab: Computer Networks Lab	3 3	4		
6	DSC-7: Internet Technologies DSC-8: Operating System Concepts DSC-7Lab: JAVA Script, HTML, CSS Lab DSC-8Lab: C# Programming Lab	3 3	4		
7	DSC-9: Computer Graphics and Visualization DSC-10: Design and Analysis of Algorithms DSC-11: Software Engineering DSC-9Lab: Computer Graphics and Visualization Lab DSC-10Lab: Algorithms Lab	3 3 3	4 4	DSE-1: Any one from Discipline Specific Elective Courses, Group – 1 ^{**} DSE-2: Any one from Discipline Specific Elective Courses, Group – 2 ^{**} Research Methodology:	3 3 3
8	DSC-12: Artificial Intelligence and Applications DSC-13: Computer Organization and Architecture	3 3		DSE-3: Any one from Discipline Specific Elective Courses,	2
	DSC-12Lab: AI Lab	5	4	Research Project:	5 6

2. Computer Science as MAJOR with another Subject also as MAJOR (Table IIIA of Model Curriculum)

3. Computer Science as MINOR with another Subject as MAJOR (As per Table IIA of Model (Curriculum)
---	-------------

Semester	Discipline Specific Core Courses (DSC)		Hour of Teaching/ Week	
			Lab	
1	DSC-1: Computer Fundamentals and Programming in C	4		
	DSC-1Lab: C Programming Lab		4	
2	DSC-2: Data Structures using C	4		
	DSC-2Lab: Data structures Lab		4	
3	DSC-3: Object Oriented Programming Concepts and Programming			
	in JAVA	4		
	DSC-3Lab: JAVA Lab		4	
4	DSC-4: Database Management Systems	4		
	DSC-4Lab: DBMS Lab		4	
5	DSC-5: Programming in PYTHON	3		
	DSC-5Lab: PYTHON Programming lab		4	
6	DSC-6: Internet Technologies	3		
	DSC-6Lab: JAVA Script, HTML, CSS Lab		4	

* Vocational Courses:

Group-1:	Group-1:
 DTP, CAD and Multimedia Hardware and Server Maintenance Web Content Management Systems 	Health Care TechnologiesDigital MarketingOffice Automation
• E-Commerce	Multimedia Processing
• Web Designing	Accounting Package

** Discipline Specific Elective Courses:

Group-1:	Group-2:	Group-3:
 IoT Cyber Law and Cyber Security Web Programming - PHP and MySQL Clouds, Grids, and Clusters Software Testing 	 Information and Network Security Data Compression Discrete Structures Opensource Programming Multimedia Computing Big Data 	 Data Analytics Storage Area Networks Pattern Recognition Digital Image Processing Parallel Programming Digital Signal Processing

Model Syllabus for BSc (Basic and Honors), Semesters I and II

Semester: I

Course Code: DSC-1	Course Title: Computer Fundamentals and Programming in C
Course Credits: 04	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 30
Exam Marks: 70	Exam Duration: 03

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Confidently operate Desktop Computers to carry out computational tasks
- Understand working of Hardware and Software and the importance of operating systems
- Understand programming languages, number systems, peripheral devices, networking, multimedia and internet concepts
- Read, understand and trace the execution of programs written in C language
- Write the C code for a given problem
- Perform input and output operations using programs in C
- Write programs that perform operations on arrays

Course Content

Content	Hours
Unit - 1	
Fundamentals of Computers: Introduction to Computers - Computer Definition, Characteristics of Computers, Evolution and History of Computers, Types of Computers, Basic Organisation of a Digital Computer; Number Systems – different types, conversion from one number system to another; Computer Codes – BCD, Gray Code, ASCII and Unicode; Boolean Algebra – Boolean Operators with Truth Tables; Types of Software – System Software and Utility Software; Computer Languages - Machine Level, Assembly Level & High Level Languages, Translator Programs – Assembler, Interpreter and Compiler; Planning a Computer Program - Algorithm, Flowchart and Pseudo code with Examples	8
Unit - 2	
 Introduction to C Programming: Over View of C; History and Features of C; Structure of a C Program with Examples; Creating and Executing a C Program; Compilation process in C. C Programming Basic Concepts: C Character Set; C tokens - keywords, identifiers, constants, and variables; Data types; Declaration & initialization of variables; Symbolic constants. Input and output with C: Formatted I/O functions - <i>printf</i> and <i>scanf</i>, control stings and escape sequences, output specifications with <i>printf</i> functions; Unformatted I/O functions to read and display single character and a string - <i>getchar</i>, <i>putchar</i>, <i>gets</i> and <i>puts</i> functions. 	10
Unit - 3	
C Operators & Expressions: Arithmetic operators; Relational operators; Logical operators; Assignment operators; Increment & Decrement operators; Bitwise operators; Conditional operator; Special operators; Operator Precedence and Associatively; Evaluation of arithmetic expressions; Type conversion.	12

Control Structures: Decision making Statements - Simple if, if_else, nested if_else, else_if ladder, Switch-case, goto, break & continue statements; Looping Statements - Entry controlled and Exit controlled statements, while, do-while, for loops, Nested loops.

12

Unit - 4

Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays - Declaration, Initialization and Memory representation.

Strings: Declaring & Initializing string variables; String handling functions - *strlen, strcmp, strcpy and strcat;* Character handling functions - *toascii, toupper, tolower, isalpha, isnumeric* etc.

Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing address and value of variables using pointers; Pointers and Arrays; Pointer Arithmetic; Advantages and disadvantages of using pointers;

Unit - 5

User Defined Functions: Need for user defined functions; Format of C user defined functions;10Components of user defined functions - return type, name, parameter list, function body, return10statement and function call; Categories of user defined functions - With and without parametersand return type.

User defined data types: Structures - Structure Definition, Advantages of Structure, declaring structure variables, accessing structure members, Structure members initialization, comparing structure variables, Array of Structures; Unions - Union definition; difference between Structures and Unions.

Text Books

- 1. Pradeep K. Sinha and Priti Sinha: Computer Fundamentals (Sixth Edition), BPB Publication
- 2. E. Balgurusamy: Programming in ANSI C (TMH)

References

- 1. Kamthane: Programming with ANSI and TURBO C (Pearson Education)
- 2. V. Rajaraman: Programming in C (PHI EEE)
- 3. S. ByronGottfried: Programming with C (TMH)
- 4. Kernighan & Ritche: The C Programming Language (PHI)
- 5. Yashwant Kanitkar: Let us C
- 6. P.B. Kottur: Programming in C (Sapna Book House)

Course Code: DSC-1Lab	Course Title: C Programming Lab
Course Credits: 02	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 10
Exam Marks: 40	Exam Duration: 04

Practice Lab

The following activities be carried out/ discussed in the lab during the initial period of the semester.

- 1. Basic Computer Proficiency
 - a. Familiarization of Computer Hardware Parts
 - b. Basic Computer Operations and Maintenance.
 - c. Do's and Don'ts, Safety Guidelines in Computer Lab
- 2. Familiarization of Basic Software Operating System, Word Processors, Internet Browsers, Integrated Development Environment (IDE) with Examples.
- 3. Type Program Code, Debug and Compile basic programs covering C Programming fundamentals discussed during theory classes.

Programming Lab

Part A:

- 1. Write a C Program to read radius of a circle and to find area and circumference
- 2. Write a C Program to read three numbers and find the biggest of three
- 3. Write a C Program to demonstrate library functions in *math.h*
- 4. Write a C Program to check for prime
- 5. Write a C Program to generate n primes
- 6. Write a C Program to read a number, find the sum of the digits, reverse the number and check it for palindrome
- 7. Write a C Program to read numbers from keyboard continuously till the user presses 999 and to find the sum of only positive numbers
- 8. Write a C Program to read percentage of marks and to display appropriate message (Demonstration of else-if ladder)
- 9. Write a C Program to find the roots of quadratic equation (demonstration of switch-case statement)
- 10. Write a C program to read marks scored by n students and find the average of marks (Demonstration of single dimensional array)
- 11. Write a C Program to remove Duplicate Element in a single dimensional Array
- 12. Program to perform addition and subtraction of Matrices

Part B:

- 1. Write a C Program to find the length of a string without using built in function
- 2. Write a C Program to demonstrate string functions.
- 3. Write a C Program to demonstrate pointers in C
- 4. Write a C Program to check a number for prime by defining *isprime()* function
- 5. Write a C Program to read, display and to find the trace of a square matrix
- 6. Write a C Program to read, display and add two m x n matrices using functions
- 7. Write a C Program to read, display and multiply two m x n matrices using functions
- 8. Write a C Program to read a string and to find the number of alphabets, digits, vowels, consonants, spaces and special characters.
- 9. Write a C Program to Reverse a String using Pointer
- 10. Write a C Program to Swap Two Numbers using Pointers
- 11. Write a C Program to demonstrate student structure to read & display records of n students.
- 12. Write a C Program to demonstrate the difference between structure & union.

Note: Student has to execute a minimum of 10 programs in each part to complete the Lab course

Evaluation Scheme for Lab Examination

Assessment Criteria		
Program – 1 from Part B	Flowchart / Algorithm	02
	Writing the Program	05
	Execution and Formatting	08
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	05
	Execution and Formatting	08
Viva Voice based on C Programming		
Practical Record		
Total		

Semester: II

Course Code: DSC-2	Course Title: Data Structures using C
Course Credits: 04	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 30
Exam Marks: 70	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- Demonstrate different methods for traversing trees
- Compare alternative implementations of data structures with respect to performance
- Describe the concept of recursion, give examples of its use
- Discuss the computational efficiency of the principal algorithms for sorting and searching

Course Content

Content	Hours
Unit - 1	
Introduction to data structures: Definition; Types of data structures - Primitive & Non-primitive, Linear and Non-linear; Operations on data structures. Algorithm Specification, Performance Analysis, Performance Measurement	10
Recursion: Definition; Types of recursions; Recursion Technique Examples - Fibonacci numbers, GCD, Binomial coefficient ⁿ C _r , Towers of Hanoi; Comparison between iterative and recursive functions.	
Unit - 2	
Arrays: Basic Concepts – Definition, Declaration, Initialisation, Operations on arrays; Types of arrays; Arrays as abstract data types (ADT); Representation of Linear Arrays in memory; Traversing linear arrays; Inserting and deleting elements; Sorting – Selection sort, Bubble sort, Quick sort, Selection sort, Insertion sort; Searching - Sequential Search, Binary search; Iterative and Recursive searching; Multidimensional arrays; Representation of multidimensional arrays; Sparse matrices.	10
Unit - 3	
Dynamic memory allocation: Static & Dynamic memory allocation; Memory allocation and de- allocation functions - <i>malloc, calloc, realloc</i> and <i>free</i> . Linked list: Basic Concepts – Definition and Representation of linked list, Types of linked lists - Singly linked list, Doubly liked list, Header liked list, Circular linked list; Representation of Linked list in Memory; Operations on Singly linked lists – Traversing, Searching, Insertion, Deletion; Memory allocation; Garbage collection,	12

Unit - 4	
Stacks: Basic Concepts – Definition and Representation of stacks; Operations on stacks; Applications of stacks; Infix, postfix and prefix notations; Conversion from infix to postfix using stack; Evaluation of postfix expression using stack; Application of stack in function calls. Queues: Basic Concepts – Definition and Representation of queues; Types of queues - Simple queues, Circular queues, Double ended queues, Priority queues; Operations on Simple queues;	10
Unit - 5	
Trees: Definition; Tree terminologies –node, root node, parent node, ancestors of a node, siblings, terminal & non-terminal nodes, degree of a node, level, edge, path, depth; Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree and heap tree; Array representation of binary tree. Traversal of binary tree; <i>preorder, inorder</i> and <i>postorder</i> traversal; Reconstruction of a binary tree when any two of the traversals are given.	10
 Satraj Sahani: Fundamentals of Data Structures Saferences Tanenbaum: Data structures using C (Pearson Education) Kamathane: Introduction to Data structures (Pearson Education) Y. Kanitkar: Data Structures Using C (BPB) Kottur: Data Structure Using C Padma Reddy: Data Structure Using C 	

Course Code: DSC-2Lab	Course Title: Data Structures Lab
Course Credits: 02	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 10
Exam Marks: 40	Exam Duration: 04

Programming Lab

Part A:

- 1. Write a C Program to find GCD using recursive function
- 2. Write a C Program to display Pascal Triangle using binomial function
- 3. Write a C Program to generate n Fibonacci numbers using recursive function.
- 4. Write a C Program to implement Towers of Hanoi.
- 5. Write a C Program to implement dynamic array, find smallest and largest element of the array.
- 6. Write a C Program to create two files to store even and odd numbers.
- 7. Write a C Program to create a file to store student records.
- 8. Write a C Program to read the names of cities and arrange them alphabetically.
- 9. Write a C Program to sort the given list using selection sort technique.
- 10. Write a C Program to sort the given list using bubble sort technique.

Part B:

- 1. Write a C Program to sort the given list using insertion sort technique.
- 2. Write a C Program to sort the given list using quick sort technique.
- 3. Write a C Program to sort the given list using merge sort technique.
- 4. Write a C Program to search an element using linear search technique.
- 5. Write a C Program to search an element using recursive binary search technique.
- 6. Write a C Program to implement Stack.
- 7. Write a C Program to convert an infix expression to postfix.
- 8. Write a C Program to implement simple queue.
- 9. Write a C Program to implement linear linked list.
- 10. Write a C Program to display traversal of a tree.

Evaluation Scheme for Lab Examination

Assessment Criteria		
Program – 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	05
	Execution and Formatting	08
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	05
	Execution and Formatting	08
Viva Voice based on C Programming		
Practical Record		05
Total		40

Open Electives in Computer Science:

(For BA, BSc, BCom, BSW, BBA, BBM students studying Core Courses other than Computer Science/ Computer Applications)

- Office Automation
- C Programming Concepts
- Multimedia Processing
- Python Programming Concepts
- R Programming
- E-Content Development
- E-Commerce
- Web Designing
- Computer Animation
- Accounting Package